Year 6

PROMPT sheet

6/1 Place value in numbers to 10 million

The position of the digit gives its size

				$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{3} \\ & \stackrel{0}{+} \end{aligned}$		$\underset{ \pm}{n}$	$\stackrel{n}{5}$
1	2	3	4	5	6	7	8

Example

The value of the digit ' 1 ' is 10000000
The value of the digit ' 2 ' is 2000000
The value of the digit ' 3 ' is 300000
The value of the digit ' 4 ' is 40000

6/1 Round whole numbers

Example 1- Round 342679 to the nearest 10000

- Step 1 - Find the 'round-off digit' - 4
- Step 2 - Move one digit to the right - 2

4 or less? YES - leave 'round off digit' unchanged

- Replace following digits with zeros

ANSWER - 340000
Example 2- Round 345679 to the nearest 10000

- Step 1 - Find the 'round-off digit' - 4
- Step 2 - Move one digit to the right - 5

5 or more? YES - add one to 'round off digit'

- Replace following digits with zeros

ANSWER - 350000

6/2 Negative numbers

$2>-2 \rightarrow$ We say 2 is bigger than -2
$-2<2 \rightarrow$ We say -2 is less than 2
The difference between 2 and $-2=4$ (see line)

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- $8+-2$ is the same as $8-2=6$
- $8-+2$ is the same as $8-2=6$
- $8--2$ is the same as $8+2=10$

6/3 Multiply numbers \& estimate to check
e.g. 152×34

$$
\begin{aligned}
& \frac{\text { COLUMN METHOD }}{152} \\
& \frac{34 x}{608}(x 4) \\
& \frac{4560}{\underline{5168}}(x 30)
\end{aligned}
$$

6/3 Use estimates to check calculations
152×34
$\approx 150 \times 30$
≈ 4500

6/3 Divide numbers \& estimate to check

With a remainder also expressed as a fraction
e.g. $4928 \div 32$

BUS SHELTER METHOD
$1 5 \longdiv { 4 2 8 }$
$1 5 \longdiv { 4 ^ { 4 } 3 ^ { 1 3 } 2 }$
$-30 \downarrow$
132
-120
12
ANSWER - $432 \div 15=28$ r 12
$=28 \frac{12}{15}$

6/3 continued

With a remainder expressed as a decimal
$1 5 \longdiv { 4 3 2 . 0 }$
$\frac{028.8}{1 5 \longdiv { 4 4 ^ { 4 3 } 3 ^ { 1 3 } 2 . 1 2 0 }}$ $-30 \downarrow$
132
-120
12
ANSWER $-432 \div 15=28.8$

6/3 Use estimates to check calculations
$432 \div 15$
$\approx 450 \div 15$
≈ 30

6/4 Factors, multiples \& primes

- FACTORS are what divides exactly into a number
e.g. Factors of 12 are: Factors of 18 are:

1	12
2	6
3	4

1	18
2	9
3	6

The common factors of $12 \& 18$ are: $1,2,3,6$,
The Highest Common Factor is: 6

- PRIME NUMBERS have only TWO factors
e.g. Factors of 7 are:
17

Factors of 13 are
$1 \quad 13$

So 7 and 13 are both prime numbers

- MULTIPLES are the times table answers
e.g. Multiples of 5 are:
$\begin{array}{lllll}5 & 10 & 15 & 20 & 25 \ldots . . .\end{array}$
Multiples of 4 are:
$\begin{array}{lllll}4 & 8 & 12 & 16 & 20 \ldots\end{array}$
The Lowest Common Multiple of 5 and 4 is: 20

6/5 Order of operations

Bracket
Indices
$\left.\begin{array}{l}\text { Divide } \\ \text { Multiply }\end{array}\right\}$ Do these in the order they appear
$\left.\begin{array}{l}\text { Add } \\ \text { Subtract }\end{array}\right\}$ Do these in the order they appear
e.g. $3+\underset{\text { ffirst }}{4 \times 6-5}=22$

6/6 Addition

- Line up the digits in the correct columns
e.g. $48 p+£ 2.84+£ 9$
0.48
2.84

9. 0 0+
$£ 12.32$
111

6/6 Subtraction

- Line up the digits in the correct columns
e.g. 645-427

$$
\begin{array}{lll}
H & T & U \\
6^{3} & 4 & 15 \\
4 & 2 & 7 \\
\hline 2 & 1 & 8
\end{array}-
$$

6/7 Equivalent fractions

- To simplify a fraction

Example: $\frac{27}{36}$
First find the highest common factor of the numerator and denominator - which is 9 , then divide

$$
\frac{27}{36} \div 9=\frac{3}{4}
$$

- To change fractions to the same denominator

Example: $\frac{3}{4}$ and $\frac{2}{3}$
Find the highest common multiple of the denominators - which is 12 , then multiply:

$$
\frac{3}{43}_{x 3}^{x 3}=\frac{9}{12} \text { and } \frac{2^{\times 4}}{3 \times 4}=\frac{8}{12}
$$

6/8 Add \& subtract fractions

- Make the denominators the same
e.g. $\frac{1}{5}+\frac{7}{10}$
e.g. $\frac{4}{5}-\frac{2}{3}$
$=\frac{2}{10}+\frac{7}{10}$
$=\frac{9}{10}$

6/9 Multiply fractions

- Write 5 as $\frac{5}{1}$
- Multiply numerators \& denominators
e.g. $5 \times \frac{2}{3}$
$=\frac{5}{1} \times \frac{2}{3}$
e.g. $\frac{4}{5} \times \frac{2}{3}$
$=\frac{8}{15}$
$=\frac{10}{3}=3 \frac{1}{3}$

6/9 Divide fractions

- Write 5 as $\frac{5}{1}$
- Invert the fraction after \div sign
- Multiply numerators \& denominators
e.g.
e.g. $\frac{4}{5} \div \frac{2}{3}$
$=\frac{3}{2} \times \frac{1}{5}$
$=\frac{3}{10}$
$=\frac{4}{5} \times \frac{3}{2}$
$=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}$

6/10 Multiply/divide decimals by 10,100

n 0 0 0	n 0 0 0 0 5	$\underset{ \pm}{\text { n }}$	$\stackrel{n}{5}$	\bullet	$\underset{\underset{\sim}{ \pm}}{\stackrel{n}{ \pm}}$	n $\frac{1}{t}$ $\frac{0}{0}$ $\frac{0}{0}$ \underline{y}	
4	3	5	2	-	6	1	7

- To multiply by 10 , move each digit one place to the left
e.g. $35.6 \times 10=356$

Hundreds	Tens	Units	\bullet	tenths
	3	5	\bullet	6
3	5	6	\bullet	

- To divide by 10 , move each digit one place to the right
e.g. $35.6 \div 10=356=3.56$

Tens	Units	\bullet	tenths	hundredths
3	5	\bullet	6	
	3	\bullet	5	6

- To multiply by 100 , move each digit 2 places to the left
- To divide by 100 , move each digit 2 places to the right

AN ALTERNATE METHOD
Instead of moving the digits
Move the decimal point the opposite way

6/11 Multiply decimals

Step 1 - remove the decimal point
Step 2 - multiply the two numbers
Step 3-Put the decimal back in

Example: $\quad 0.06 \times 8$

$$
\begin{aligned}
& \Rightarrow \quad 6 \times 8 \\
& \Rightarrow \quad 48 \\
& \Rightarrow \quad 0.48
\end{aligned}
$$

6/11 Divide decimals

Use the bus shelter method
Keep the decimal point in the same place
Add zeros for remainders

Example: $6.28 \div 5$
$5 \frac{1.256}{\lcm{6.1} 2^{2} 8^{3} 0}$

6/12 Fraction, decimal, percentage equivalents

LEARN THESE:

$$
\begin{aligned}
& \frac{1}{4}=0.25=25 \% \\
& \frac{1}{2}=0.5=50 \% \\
& \frac{3}{4}=0.75=75 \% \\
& \frac{1}{10}=0.1=10 \%
\end{aligned}
$$

- Percentage to decimal to fraction $27 \%=0.27=\frac{27}{100}$
$7 \%=0.07=\frac{7}{100}$
$70 \%=0.7=\frac{70}{100}=\frac{7}{10}$
- Decimal to percentage to fraction
$0.3=30 \%=\frac{3}{10}$
$0.03=3 \%=\frac{3}{100}$
$0.39=39 \%=\frac{39}{100}$
- Fraction to decimal to percentage $\frac{4}{5}=\frac{80}{100}=80 \%=0.8$

0. 375
$\frac { 3 } { 8 } = 3 \div 8 = 8 \longdiv { 3 . { } ^ { 3 } 0 ^ { 6 } 0 ^ { 4 } 0 } = 0 . 3 7 5 = 3 7 . 5 \%$
$\frac{\frac{9}{12}=\frac{3}{4}}{\text { Cancel by } 3^{2}}=0.75=75 \%$

6/13 Fraction of quantity

- 4 means $\div 5 \times 4$ 5
e.g. To find 4 of $£ 40$

$$
5
$$

$$
£ 40 \div 5 \times 4=£ 40
$$

- 6 - 13 Pērc̄ēnfagé of ${ }^{-} q u \overline{a n} f i t \bar{y}$

Use only

> ○ $50 \%-\frac{1}{2}$
> $-10 \%-\frac{1}{10}$
> $-1 \%-\frac{1}{100}$

Example: To find 35% of $£ 400$

$$
10 \%=£ 40
$$

$$
20 \%=£ 80
$$

$$
5 \%=£ 20
$$

$$
35 \%=£ 140
$$

6/14 Similar shapes

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

Scale factor $=6 \div 3=2$
Length $a=5 \times 2=10 \mathrm{~cm}$
Length $b=8 \div 2=4 \mathrm{~cm}$

6/14 Un̄equūal shārīng

Example- unequal sharing of sweets

$$
\begin{aligned}
& \text { A gets } \\
& 3 \text { shares } \\
\Rightarrow> & 3 \text { sweets gets } \\
\Rightarrow & 12 \text { sweetsp }
\end{aligned} \quad \begin{aligned}
& 4 \text { shares } \\
& 4 \text { sweets } \\
& 16 \text { sweets }
\end{aligned}>\times 4
$$

6/15 Express missing numbers algebraically

An unknown number is given a letter

Examples

$2 a-4=8$

```
\(2 a=12\) so \(a=6\)
```

$b+32=180$ so $b=148^{\circ}$

6/15 Use a word formula

Example: -Time to cook a turkey
Cook for 45 min per kg weight
Then a further 45 min
For a 6 kg turkey, follow the formula:
$45 \min \times 6+45$ min
$=270 \mathrm{~min}+45 \mathrm{~min}$
$=315 \mathrm{~min}$
$=\underline{5 h 15 m i n}$

6/16 Number sequences

- Understand position and term

Position	1	2	2	4
Term	3	7	11	15

Term to term rule $=+4$
Position to term rule is $\times 4-1$
(because position 1×4-1=3)
nth term $=n \times 4-1=4 n-1$

- Generate terms of a sequence

If the nth term is $5 n+1$
$1^{\text {st }}$ term $(n=1)=5 \times 1+1=6$
$2^{\text {nd }}$ term ($n=2$) $=5 \times 2+1=11$
$3^{\text {rd }}$ term $(n=3)=5 \times 3+1=16$

6/17 Possible solutions of a number sentence

Example: x and y are numbers
Rule: $x+y=5$
Possible solutions: $x=0$ and $y=5$

$$
\begin{aligned}
& x=1 \text { and } y=4 \\
& x=2 \text { and } y=3 \\
& x=3 \text { and } y=2 \\
& x=4 \text { and } y=1 \\
& x=5 \text { and } y=0
\end{aligned}
$$

6/18 Convert units of measure METRIC

When converting measurements follow these rules:

- When converting from a larger unit to a smaller unit we multiply (x)
- When converting from a smaller unit to a larger unit we divide (\div)

UNITS of LENGTH
$10 \mathrm{~mm}=1 \mathrm{~cm}$
$100 \mathrm{~cm}=1 \mathrm{~m}$
$1000 \mathrm{~m}=1 \mathrm{~km}$

> | UNITS of MASS |
| :--- |
| $1000 \mathrm{~g}=1 \mathrm{~kg}$ |
| $1000 \mathrm{~kg}=1$ tonne |

> | UNITS of TIME |
| :--- |
| $60 \mathrm{sec}=1 \mathrm{~min}$ |
| $60 \mathrm{~min}=1$ hour |
| $24 \mathrm{~h}=1$ day |
| 365 days $=1$ year |

```
UNITS of VOLUME
1000ml = 1 litre
100cl = 1litre
```

6/19 Convert units of measure METRIC/IMPERIAL

LEARN: $\quad 5$ miles $=8 \mathrm{~km}$

6/20 Perimeter and area of shapes

Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares

							B		
		A							
		C							

Perimeter of each shape is different A-12; B-14; C-16

6/21 Area of parallelogram \& triangle

- Area of parallelogram Area of parallelogram $=b \times h$

$$
\begin{aligned}
& =8 \times 5 \\
& =40 \mathrm{~cm}^{2}
\end{aligned}
$$

- Area of triangle ($\frac{1}{2}$ a parallelogram)

Area of triangle $=\frac{b \times h}{2}$

$$
\begin{aligned}
& =\frac{8 \times 5}{2} \\
& 20 \mathrm{~cm}^{2}
\end{aligned}
$$

6/22 Volume

- Volume of cuboid

Volume $=1 \times w \times h$

$$
\begin{aligned}
& =5 \times 3 \times 2 \\
& =30 \mathrm{~cm}^{3}
\end{aligned}
$$

- Volume of cube Volume $=1 \times w \times h$

$$
\begin{aligned}
& =3 \times 3 \times 3 \\
& =27 \mathrm{~m}^{3}
\end{aligned}
$$

6/23 Construct 2D shapes

Example: Triangle with side and angles given

- Draw line $A B=7 \mathrm{~cm}$
- Draw angle 34° at point A from line $A B$
- Draw angle 47° at point B from line $A B$
- Extend to intersect the lines at C

6/23 Construct 3D shapes
CUBE \& its net

CUBOID \& its net

TRIANGULAR PRISM \& its ne \dagger

6/24 Properties of shapes

TRIANGLES - sum of angles $=180^{\circ}$

ISOSCELES triangle 2 equal sides \& 2 equal angles

EQUILATERAL triangle 3 equal sides \& ALL angles 60°

$\underline{\text { QUADRILATERALS }- \text { sum of angles }=360^{\circ}}$

REGULAR POLGONS - all sides the same

- Polygons have straight sides
- Polygons are named by the number sides

3 sides - triangle
4 sides - quadrilateral
5 sides - pentagon
6 sides - hexagon
7 sides - heptagon
8 sides - octagon
9 sides - nonagon
10 sides - decagon

Sum of exterior angles is always 360°

- interior \& exterior angle add up to 180°
- the interior angles add up to:

Triangle

$$
=1 \times 180^{\circ}=180^{\circ}
$$

Quadrilateral $=2 \times 180^{\circ}=360^{\circ}$
Pentagon $=3 \times 180^{\circ}=540^{\circ}$
Hexagon $=4 \times 180^{\circ}=720^{\circ}$ etc

6/25 Parts of a circle

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. $(d=2 \times r)$ or $\left(r=\frac{1}{2} \times d\right)$

6/26 Angles and straight lines

- Angles on a straight line add up to 180°

$148^{\circ}+32^{\circ}=180^{\circ}$
- Angles about a point add up to 360°

$$
146^{\circ}+90^{\circ}+124^{\circ}=360^{\circ}
$$

- Vertically opposite angles are equal

6/27 Position on a co-ordinate grid

6/28 Transformations

- Translation -A shape moved along a line

Example - Move shape A 3 right \& 4 down
Can also be written as a vector $\binom{3}{-4}$ Right $\begin{aligned} & \text { Down }\end{aligned}$

Notice:

- The new shape stays the same way up
- The new shape is the same size
- Reflect a shape in x-axis

- Reflect a shape in y-axis

6/29 Graphs

- Pie chart

Transport	Frequency	Angle
Car	13	$13 \times 9=117^{\circ}$
Bus	4	$4 \times 9=36^{\circ}$
Walk	15	$15 \times 9=135$
Cycle	8	$8 \times 9=72$

Total frequency $=40$

$$
360^{\circ} \div 40=9^{\circ} \text { per person }
$$

- Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.

6/30 The mean

The mean is usually known as the average.
The mean is not a value from the original list.
It is a typical value of a set of data
Mean $=$ total of measures \div no. of measures
e.g.- Find mean speed of 6 cars travelling on a road Car 1-66mph
Car 2-57mph
Car 3-71mph
Car 4-54mph
Car 5-69mph
Car 6-58mph

Mean $=\frac{66+57+71+54+69+58}{6}$

$$
\begin{aligned}
& =\frac{375}{6} \\
& =62.5 \mathrm{mph}
\end{aligned}
$$

Mean average speed was 62.5 mph

